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ABSTRACT

In this research paper, firstly, | introduce thencept of implicative algebras and obtain certairoperties.
Further, | prove that implicative algebra is equggp with a structure of a bounded lattice and prdivat it is lattice
implication algebra. It also observes that>" can never be associative. Secondly, we introdtwe more binary
operations “+” and “—“on implicative algebra and olain certain properties with these operations. e, we prove
that any implicative algebra is a metric space.ci\lse prove that every implicative algebra can taaleninto the regular

authomethrized algebra of Swamy (1964).
KEYWORDS: Implicative Algebra, Concept, Prove, Regular Autktmized Algebra

INTRODUCTION

The concept of implicative algebra is introducedAibott. J.C [1] in the case of classical propositl logic,

which he discusses algebraic systems with a biopeyation modeled on the BOOLEAN OPERATIGON- Y = X VY,

where X' is the Boolean complement of x. Such algebra isfyatg basic equalities motivated from laws of iiogtion in

the absolute propositional calculus and is cailheplicative algebras. Later the authors G.M. Hardegn 1981 define
implicative algebra in the case of non-classicalppsitional logic. The concept of lattice implicatialgebras is due to
Xu[7]. In his paper, he introduced the concept atfide implication algebra andquasi-lattice imptica algebra as a
bounded lattice satisfying a system of some axiam studied certain properties. Later many authikesJun et al. [2]

have studied the properties of filters and fuziters of lattice implication algebras and quasii¢at implication algebras.
Also Zhu.Y and Tu. W [8] have introduced an equevdldefinition for lattice implication algebra inuXPan.Y [6] and

Yang. Xu et al. [9] also define a lattice implicatialgebra by combining lattice and implicationeddga and also he gives

some examples of lattice implication algebras.
Definition 1.2.1

Suppose R is a relation defined on a non-empt$ settisfying the following three properties.

[01] For anya€S, we haverRa...................... (Reflexive)
[02] If aRb andbRa, thena=b.................. (Anti-symmetric)
[03] If aRb andbRc, thenaRc.............cocevennnne. (Transitive)

Then the relatiorR is called goartial ordering of S or, simply it is a partial order. Now a seto§ether with the
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partial order R, that isS(R) is called gartially ordered set or, simply, an ordered set or poset. When we waspecify
the relation R, the most familiar ordering relationwhich is called a natural ordering relatiordenoted by £” (read

“less than or equal”).
Definition 1.2.2

A poset §, <) is called achain or totally (linearly) ordered setif for all a, b€S, eithera<b or b<a. On the
other hand, {, <) is ananti-chain provided any two distinct elements b€S are incomparable, that is, neithe€ b nor

b<a in symbola \\ b.
Examples 1.2.3

+ Let S be any collection of sets. The relatomf set inclusion is a partial ordering of S. Sfieally, A ] A for

anyset A;if ALl BandB [0 Athen A=BandifAl Band B[ C thenAC.

« Consider the set N of positive integers. We saylividesb” written a | b, if there exists an integersuch that

ac=b. For example, 2 | 4,3 |12,7 | 21 and so on. Hiion of divisibility is a partial ordering of N.

* The relation “|” of divisibility is not an orderingf the set Z of integers. Specifically, the relatis non anti-

symmetric. For instance, 2|-2 and -2 | 2,b#t—2.
Definition 1.2.4

There are two ways to define a lattice L. One wayoi define L in terms of a partially ordered Setat is, a
lattice L may be defined as a partially orderedisathich bothinf (a, b) andsup(a,b) exists for any pair of elements
a,beL. Another way is to define a lattice L axiomatigalThat is, a non-empty set L closed under two tyirgoerations
called meet and join denoted hyandV respectively, thenL{ A,v) is calledlattice if the following axioms hold where

a,b,c are elements in L.

[L1] Commutative law
(layaCb=bCa
(lbyaCb=bCa

[L2] Associative law

(2a) (aCb)Cc=al(bCc)a (bac)
(2b) (@aClb)Cc=al(bCc)

[L3] Absorption law
Ba)alL(alCb)=a
@Bb)yalL(alCb)=a

[L4] Idempotent law
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(4a)ala=a
(4byala=a
Definition 1.2.15

A bounded lattice I(; v,A,0,1) with an order reversing involution ardbinary operation-%”" is called a

lattice implication algebra if for any x,y,z€L it satisfies the following axioms.
(11) x—>(y—z)=y—(x—2)
(I12) x—x=1
(I3) x—y=y ' —x’
(I14) x—>y=y—x=1=x=y
(I5) @—y) »y=(y—x) —x
(L1) (xvy)—z=(x—2)A(y—2)
(L2) (xAy)—z=(x—2)V(y—2)
Definition 2.1.1
An algebrd =(I; - ;,00), I= (I; —, ',0,1) of type <2, 1,0, 0> is called an implicatiakgebra, if for every
X, Y, 20l , x,y,z it satisfies the following conditions.
(1) x— (y—2) =y (x—2)
(2) 1ox=x
(3)x—1=1
(4) x—>y=y'—x'
(5) (k—y) —y= (y—x) -
(6) 0=1

“w o on

The binary operation clearly formalized by the imogtive arrow “>” and every property of implicative algebra
can be derived by using of the above conditionsisTdm implicative algebra is an equation defingglala of type <2, 1,
0, 0>, where we designate the operation simplyy, for anyx,yel and we can read as arrowy". But other books can

write x—y by xy andxxy.
Lemma 2.1.2

Every Boolean algebra( v,A,’,0,1) is an implicative algebra, that is for everyeB definedx—y=x'vy.
Proof

Let B be a Boolean algebra and for everyeB definex—y=x'vy.
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Claim: B is an implicative algebra.

(1) x—=(y—2z)=y—(x—2)

Now, x—(y—z)=x—(y'Vz)

=x'V(y'Vz)

=(Y'VX)Vz....o

SY'V(X'VZ) o

=y—(x—2)

(2) Iox=x

.............. (by associative of)

.............. (by commutative of)

.........(again by associative of)

Now, 1—x=1'Vvx=0vx

(3)x—1=1
Now, x—1=x'v1=1

(4) x—y=y'—x'

. since 0 is a least element of B

...................... since 1 is a greatest element of B

Now, x—y=x'Vy=yvx'=y'—x'

(5) (k—y)—>y=(r—x)—x

Now, (x—y)—y=(x'Vy)—y

=(x'vy)'vy
=(xAy')Vy
=yV(xAy')
=(YWVX)AGVY)......
=(yvx)Al

=yVx

.... (since (B\,A) is a distributive lattice)

Again, y—x)—x=(y'Vx)—x

=(y'vx)'Vx
=(yAx")Vx
=xV(yAx')

=(xvVy)A(xvx')
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=(xvy)Al

=xVy

But, xvVy=yvx and hencex—y)—y=(y—x)—x.

Finally, in every Boolean algebra we haveQland G=1 and henceR; v,A,—,0,1)) is an implicative algebra.
Definition 2.1.3

Letl be an implicative algebra then the relatiodefined on | by<y if and only ifx—y=1, for allx,y€l.
2.2 Properties of Implicative Algebras
Lemma 2.2.1

Let| be an implicative algebra, then for alyel, we have

(1) x—x=1

(2) 1=0
Proof

Let| be an implicative algebra angyel

(1) 1=c—1)—>1=(1—>x)—>x=x—Xx

(2) 1=1-1

=0'—-1

=1-0

=0
Lemma 2.2.2

In an implicative algebra, for everyy,z€l the following conditions hold.

(1) 0-x=1

(2) x—>y=1=y—xox=y

(3) x—y=1 andy—z=1, therk—z=1

(4)x <yoz—ox<z—oyandy—z<x—z

() (k—=y)—y)—y=x—y

(6) (x—y)—[(y—2)—(x—2)]F1
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Proof

Let| be an implicative algebra angly,z €1

(1) O—x =x'-0'

=x'—-1

=1

(2) (®) Supposec—y=1 andy—x=1

Now, x=1—-x =(y—x)—x

=(x—y)—y

=l-y=y

Hencex—y=1=y—x imply x=y.................... (%)

(&) supposec=y

NOW, X —Y=X—X .. iieieiinieeanaanes sincex=y

=1

ANnd, y—=x=y oy sincex=y

=1

Hencex=y imply x—y=1=y—x................... (*x)

Therefore, from%) and &) we havex—y=1=y—x&x=y.
(3) Letx—y=1 andy—z=1
Thenx—z=x—(1—2)

=x—((y—2)—2)

=x—((z—y)—Y)

=(z—y)—>(x—y)

=(z—y)—-1

=1

Hence ifx—y=1 andy—z=1, thenx—z=1.

(4) (=) supposer<y, thenx—y=1

Now, consider£—x)—(z—y)=(x'—z")—(y'—z')

=y'=((x'—2)—7))
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=y'—=((z'—x)—x)

=(z'—x)—>(y'—x)

=(z'—x" )= (x—y)=1

=(z'—x")—1=1

Hencex<y imply z—x<z—y........cccciiiiii i (%)
Similarly, consider ¥—z)—(x—z)=x—((y—2z)—z)
=x—((z—y)—-Y)

=(z—y)—>(x—y)

=(z—y)—1=1

Hencex<y imply y—z<x—z.......cccoovevviniiinnnnn. ()
(&) supposg—x < z—y, then g—x)—(z—y)=1

Now, x—y=x—(1-y)=x—((z—x)—=(z—y)—Y)
=(z—x)—(z—y)—>(x—Y)

=(x'—2 )= (y'—z)—('—x)
=y'—=((x'—2)—z)—(y'—x)
=y'—=((2'—x)—x)—>(y'—x')

=z —x)—>(y'—x)—>(y'—x')

=(z'—x")—1=1

Hencez—x <z—yimplyx=y..........ccceevieninnn ()
Considery—z < x—z, then j—z)—(x—2z)=1

Now, x—y = x—(1-y) =x—((y—2)—(x—2)—Y)
=(y—z)>(x—z)—>(x—>Y)

=x((y—>2) 2} (x—Y)

=x=((z-y) =)= (x—y)

=(z-y)>(x—y) > (x—y)

=(z—y)—1=1

Hencey—z <x—zimply x=y.........cooiiiiiiniiins (xx)

Therefore, fromx), (xx). (x+*) and fxxx), we havex<y ©z—x < z—y andy—z < x—z.
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() (k—=y)=y)=y=(y—=(x—y))=(x—Y)
=x=(—y))—=(x—y)

=(x—1)—>(x—y)

=1-(x—y)

=x—y

Hence (§—y)—y)—y=x—y.

(6) x—y)=l(y—2)—(x—2)] =(x—y)—>[x—((y—2)—2)]
=(x—y)—[x—((z—y)—-y)]
=(x—y)—-[(z-y)—(x—y)]
=(z—y)=l(x—y)—>(x—y)]
=(z—y)—1=1

Hence ¢—y)—[(y—2)—(x—z)=1.

Remarks 2.2.3:(1) From Lemma 2.2.1 (1), Lemma 2.2.2 (2) and (&) havex—x=1, x—y=1=y—x&x=y and

if x—y=1 andy—z=1 thenx—z=1 respectively. Therefore, it is clear that | igaatially ordered set.

(2) From definition 2.1.1 (3) and Lemma 2.2.2 (¢ havex—1=1 and 6-x=1 respectively, then<l and &x.

That is 1 and O are the greatest and the leasteeksnof | respectively and hence | is bounded. &foee, | is a bounded

poset.

Lemma 2.2.4
Let| be an implicative algebra, then fogl, we have
(1) ()=x
(2) x'=x—0

Proof

Let| be an implicative algebra ang /
(1) &) =1—(x")’

=0'—(x")

=x'—0

=x'—1'

=l-x=x

Hence, £')'=x.
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(2) x'=1-x'=(x') -1’
=x—0
Hence x'=x—0
Theorem 2.2.6
In any implicative algebra the following hold for alk,yel.
(xvy)'=x'Ay' and fAy)'=x'Vy'.
Proof
Let! be an implicative algebra andye!
(1) Considerfvy) —x'Ay'=((x—y)—=y) =((y' =x)—=y")
=((x—=y)=y) =((' =x)—y)
=(('—=x")=y)—=((x—y)—)
=((x—=y)=y)=((x—=y)—y)=1
Then, V) SX'AY cov e (+)
And also x'Ay'—(xvy) =((y'—x") -y ") = ((x—y)—y)
= ((=y)=y)=((v'—x)—-y")
= ((=y)=y)=((y' —x)—y)
= ((=y)=y)=((x=y)—y)=1
Then,x' Ay S(EVY) coeeiee e (+%)
Therefore, from«) and ) ,we have £vy)'=x'Ay'.
(2) Consider £Ay)' —x'vy'=((y—x)—-y')) = ((x' =y)—y’)
=((r—x)—y )= ((x'—y)—-y)
=((r—x)—-y) = ((—x)—y)=1
Hence, £AY)'SX'VY' ..oovioiiieeeee e (*)
And also x'Vy'—(xAy) =((x'=y") =y )= ((y—x)—y))
=((x'=y")=y)—=((y—x)—y)
=((x'=y)=y)=(x'—y)—y)=1
HENCE X' VY ' S(XAY) v (%)

Therefore, from#£) and &x), we have fAy)'=x'vy'.
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Lemma 2.2.7

In any implicative algebra I, the following holdrfall x,y€l.

() xAy<x,y<xVy

(b) xvy is the least upper bound of §/}

(c) xny is greatest lower bound of{y}
Proof

Let | be an implicative algebra angyel

(@) ConsidexAy—x=((y—x)—y') —x =x'—((y—x)—y’)
=(y—x)—(x'—y")

=(y—x)—(y—x)=1

HenCexXAY<X......cocevviiviieennnnnnn. (%)

Again, xAy—y=((y—x)—y') =y=y' =((y—x)—y " )=(y—x) - —y)=1

Hencey<xVy......ooooovveiienne (%)

Therefore, from#), (xx), (+x**) and fx=*x), we havexAy<x,y<xVy.

(b) From (a), it can be observed thaty is an upper bound of{y}

Now, letu is an upper bound afy, thenx,y<u this impliesx—u=1 andy—u=1
Now, (xVy)—u=((x—y)—y)—-u=((x—y)—y)—(1-u)
=((x—=y)—y)—=((y—u)—u)

=((x—=y)=y)=((u—y)—-y)

=(u—y)=(((x—y)—y)—y)

=(u—y)—>(x—Y) e, by Lemma 2.2.2 (5)

2x—>U=L by Lemma 2.2.2 (6)

Hence , ¢vy)—u=1=xVvy<u .This shows thatvy is the least upper bound of,§}.

(c) ClearlyxAy is a lower bound af,y. Now suppose thdtis a lower bound ofxX,y}
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ThenL<x andL<y, which impliesL.—x=1 andL—y=1.
ConsiderL—(xAy)=L—((y—x)—y') =((y—x)—y')—L’
=((r—x)—y)—(1-L)

=((r—x)—y)—=((L—y)—L)
=((—x)—y )=’ —>L)—-L)
=((—%)—y) =L —y)—-y)

=L =y )= ((—x)—y)—-Y)

=(L' =y )= (("—=y)—=y)=Y)

=(L' =y )=(x"=y)

>x'—L'=L—x=1

ThusL—(xAy)=1, that isL <(xAy) and henceAy is a greatest lower bound of §}.

Corollary 2.2.10

Proof

In any implicative algebra I, the following conditis are valid for any
x,Y€El.
(1) (xvy)—z <x—zand kVvVy)—z <y—z

(2) x—z < (xAy)—z andy—z < (xAy)—z

Let | be an implicative algebra angyel

(1) Consider ({vy)—z)—( x—2z)=((x—>y)—y)—2z)—(x—2)

2 x=((x—y)—y)

2 (x=y)—=(x—y)=1

Hence , (¢vy)—z)—(x—z)=1 it follows that {vy)—z < x—z .
Again consider §vy)—z) —>(y—2z)=((x—y)—y)—2)—(—2)
2 y—=((x=y)—-y)

2 (x=y)=0—v)

> (x—y)—1=1

Hence, (¢vy)—z) —(y—2z)=1 it follows that gvy)—z < y—z .

Therefore, £vVy)—z < x—z and kVvy)—z < y—z.
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(2) Consider f—z)—(xAy)—z=(x—z)—((y—x)—y') —2)
=(x—z)— (2= ((y—x)—y))

=(x—z)—=((y—x)—(z"—>y)

=(x—2z)—=((y—x)—(—2)

=(y—x)—((x—2)—(y—2)

=(y—x)—(y—((x—2)—2)

=(y—x)—(y—((z—x)—x))

=(y—x)—((z—x)—(y—x))

=(z—x)—=((y—x)—(y—x))

=(z—x)—1=1

Hence, £—z)—(xAy)—z=1 it follows thatx—z < (xAy)—z
Consider y—z)—((xAy)—z)=(y—2)—(((y—x)—y') —2)
=(y—2)—(z' —((y—x)—y))

=(—2)—=((y—x)—(z'—y))

=(y—2)=((y—x)—(y—2)

=(y—x)~((y—2)—(y—2)

=(y—x)—1=1

Hence, y—z)—((xAy)—z)=1 it follows thaty—z < (xAy)—z.

Thereforex—z < (xAy)—z andy—z < (xAy)—z.

Theorem 2.2.11

Proof

In an implicative algebra I, the following conditi® are satisfied. For anyy€l.
(@) (vy)—z=(x—2)A(y—2)

(b) (xAy)—z=(x—2)V(y—2)

(a) From the above corollary 2.2.9 (1) and corgla2.10 (1), we have
(xvVy)—z < (x—=2)A(Y—2Z) oo, (*)
And it remains to show that the other way{z)A(y—2z)<(xvVy)—z . Now

[(x—=2)Ay—2)]=(xVy)—z
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=[((x—=2)—>(y—2)) > (x—2) ] =[((x—y)—y)—2]
=[((x—=y)—y)—2] =[(x—2)—(y—2))—(x—2) ]
=[(x—=2)—=(y—2)]-[((x—y)—y)—2z) —(x—2) ]
=[(x—2)—>(y—2)]-[(x—2) = ((x—y)—y)—2)]
=y—((x—2)—2)]-[((x—y)—y)—(x—2)—2)]
=((x—y)=y)~l(y—=((x—2)—>2)—((x—2)—2))]
=((x—=y)=y)=l((x—2)—2)—y)—y)]
=((x—2)—2)->y—[(x—y)—=y)—V)]
=((x—2)>2)—>y)—>(x—y)
>x—((x—2)—2)=(x—z)—(x—z)=1

Hence g—z)A(y—z)—(xVy)—z=1, then

Therefore, from+) and =) we have £vy)—z=(x—z)A(y—2).
(b) Clearly from the corollary 2.2.9 (2) and coanyi 2.2.10 (2), we have
(X 2V (Y Z)<AY)Ze v (3)

And it remains to show that the other wag)—z<(x—z)V(y—z). Now
(xAy)—z—(x—2)V(y—2)

=((y—x)—y) —z]-[((y—2)—(x—2)) > (x—2)]

=z’ = ((y—x)—y ) =[((y—2)—(x—2))>(x—2)]
=[(y—x)—(z' -y ) -=[((y—2)—(x—2)) > (x—2)]
=[(y—x)—>(—2)]-[((y—2)—(x—2))>(x—2)]
=(y—2)—(x—2z)-[((y—x)—(y—2)—(x—2)]
=x—=((y—2)—2)-[((y—x)—(y—2))—(x—2)]
=x—=((z—y)—-y) - [(y—x)—>(y—2)) > (x—2)]
=(z—y)—=(x—y) - [(y—x)—>(y—2)) > (x—2)]
=(y—x)—(y—2)-l((z—y) > (x—y))—(x—2)]
=(y—x)—>(y—2) - [x—((z2—y)—-y) - (x—2)]
=(y—x)—(y—2) =[x ((y—2)—>2)—(x—2)]

=(y—=x)—=(—2)-(y—2)—(x—2)—(x—2)]
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=(y—x)—(y—2)-(y—2)—1]

=(y—x)—(y—2)—1=1

Hence ¢Ay)—z—(x—z)V(yvz)=1, then

(xAY)—z<(x—2)V(YVZ) oo ()

Therefore, from+) and ), we have fAy)—z=(x—z)V(y—z).
CONCLUSIONS

In this paper, based on the implication operateor a partial order on non-empty | could be induced a
generating boundary lattice on non-empty | with greatest element and the least element is disgu3sesn lattice
implication algebra could be obtained if the operat'—” satisfies the defined axioms and | proved thaplioation
algebra is lattice implication algebra. Moreovee @btained the equivalent definition of lattice liogtion algebra of Xu

with fewer axioms and proved that every implicatédgebra is a authometrized algebra of Swamy.
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